Affiliation:
1. CAS Key Laboratory of Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
2. University of Chinese Academy of Sciences, Beijing 100871, China
Abstract
Abstract
Redox control in hydrothermal experiments is routinely achieved through double-capsule and Shaw membrane techniques. These techniques control oxygen fugacity (fO2) by imposing a defined hydrogen fugacity (fH2) on a studied sample enclosed, together with H2O, in a hydrogen membrane capsule made of Pt or Ag-Pd alloys. However, due to the low permeability of these membranes to H2 at low temperatures (T), these techniques do not work efficiently below 450 °C. Here, we tested fused silica as a new hydrogen membrane and successfully applied it to monitor and control the redox states of studied samples at T down to 200 °C in hydrothermal experiments. Our results showed that 3, 8, 16, 36, 96, and 216 h are sufficient for a fused silica capillary capsule (FSCC) to reach osmotic equilibrium with the externally imposed 1 bar of H2 at 350, 300, 250, 200, 150, and 100 °C, respectively, and H2 pressures inside a FSCC was very close to the externally imposed values after osmotic equilibrium. By using FSCC as a hydrogen fugacity sensor, equilibrium H2 pressures for Ni-NiO-H2O and Co-CoO-H2O redox buffer assemblages at 250–400 °C and 1000 bar total pressure were measured. The equilibrated fO2 calculated are consistent with those derived from previous literature. Besides, FSCC can be used as a sample container, where fH2 and fO2 of enclosed samples can be continuously controlled. Furthermore, FSCC is an ideal container for sulfur-bearing samples, and its transparency allows spectroscopic analyses of the sample. Our work extended the low-T limit of previously well-developed redox control techniques and may open up a new research avenue in low-T hydrothermal experiments.
Publisher
Mineralogical Society of America
Subject
Geochemistry and Petrology,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献