Characteristics of congruent dissolution of silicate minerals enhanced by chelating ligand under ambient conditions

Author:

Wang Jiajie1ORCID,Nurdiana Astin1,Sato Yoshinori1,Watanabe Noriaki1,Tsuchiya Noriyoshi12ORCID

Affiliation:

1. Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan

2. National Institute of Technology, Hachinohe College, Hachinohe 039-1192, Japan

Abstract

Abstract Natural and anthropogenic chelating ligands play important roles in promoting mineral dissolution during water-rock interactions. To address the remaining issue of how chelating ligands participate in the dissolution of minerals, this study investigated the dissolution characteristics of seven types of silicate minerals in the presence of a chelating ligand, N,N-bis(carboxymethyl)-L-glutamic acid (GLDA), which is a glutamic acid derivative, through batch dissolution experiments. The results showed that the dissolution of all types of silicate minerals, i.e., olivine (nesosilicate), epidote (sorosilicate), tourmaline (cyclosilicate), enstatite (single-chain inosilicate), hornblende (double-chain inosilicate), biotite (phyllosilicate), and anorthite (tectosilicate), can be enhanced by up to two orders of magnitude at both pH 4 and 8. The chelating ligand particularly facilitated the dissolution of minerals with a higher Al content, such as tourmaline and anorthite. Furthermore, the presence of chelating ligands enhanced the leaching of not only metals but also Si from minerals, resulting in a more congruent characteristic of mineral dissolution. A possible mechanism is that the chelating ligand adsorbs onto the negatively charged the mineral surface, which attracts more H+ and polarizes Si-O and Mg-O bonds, thereby dissolving the minerals at a faster rate. These results have significant implications for understanding the dissolution of minerals in nature and for the application of chelating agents in geological and materials engineering.

Publisher

Mineralogical Society of America

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3