The relationship of destinezite to the acid sulfate alteration at the El Laco magnetite deposit, Chile

Author:

Velasco Francisco1,de la Pinta Noelia2,Tornos Fernando3,Briezewski Thomas2,Larrañaga Aitor4

Affiliation:

1. Departamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología, E-48080 Bilbao, Spain

2. Departamentos de Física de la Materia Condensada y Física Aplicada, Facultad de Ciencia y Tecnología, E-48080 Bilbao, Spain

3. Instituto de Geociencias (IGEO, CSIC-UCM), Doctor Severo Ochoa, 7, E-28040 Madrid, Spain

4. Sgiker Servicios Científicos, Universidad del País Vasco, Barrio Sarriena, s/n, E-48940 Leioa, Vizcaya, Spain

Abstract

Abstract Destinezite, ideally Fe23+(PO4)(SO4)(OH)·6(H2O), is found as nodular lumps in hematite-rich epiclastic sediments accumulated in small crater lakes on the slopes of El Laco volcano. These lumps are almost entirely dominated by fine-grained destinezite replacing earlier lipscombite, and associated with gray hematite. The crystal structure of destinezite has been re-examined to test for possible differences with respect to the earthy and poorly crystalline destinezite that forms by weathering in cave soils and mine waste dumps. The structural refinements confirm that the differences are minor. The El Laco destinezite was refined in space group P1 with a = 9.5828(2), b = 9.7440(3), c = 7.3302(3) Å, and α = 98.796(3)°, β = 107.985(3)°, γ = 63.898(2)°, V = 584.50(4) Å3, and Z = 1. We measured by calorimetry the enthalpy and derived the entropy and the Gibbs free energy of formation of destine-zite (–4051.7 ± 4.3, –1518.5 ± 20.0, and –3598.9 ± 7.1 kJ/mol, respectively). This has allowed us to estimate the equilibrium constant in the temperature range 0–300 °C (log K = –27.97 ± 1.1). We can predict that destinezite coexists with hematite over the range of conditions that typically encompass the steam-heated hydrothermal environments recognized at El Laco. The presence of destinezite along with hematite and the occurrence of alunite, jarosite, and variscite in the system provide evidence of intense hydrothermal alteration during the extrusion of Fe-rich melts at El Laco volcano. The mineral assemblage and the available geochemical data suggest that destinezite formed in hydrothermal conditions by “maturation” of an immiscible Fe–P-rich melt. An unknown Fe–P–O phase produced by this melt was first replaced by lipscombite and later, owing to intense sulfidation, by destinezite. This replacement took place in the vadose zone above the paleowater table by relatively cool (<150 °C) groundwaters acidified by oxidation of magmatic SO2 to aqueous sulfate in a steam-heated system. Our model precludes other modes of formation, such as devitrification of hypothetical Fe–P–S–O-rich melts ejected from the volcano and supergene crystallization.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3