Solubility of Na2SO4 in silica-saturated solutions: Implications for REE mineralization

Author:

Chen Huan1,Cui Hao1,Zhong Richen1,Xie Yuling1,Yu Chang1,Li Zimeng1,Ling Yifan1

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Abstract Sulfate is traditionally considered to have retrograde solubility in aqueous solutions. However, our recent hydrothermal diamond-anvil cell (HDAC) experiments have shown that the solubility of Na2SO4 changes from retrograde to prograde in the presence of silica, leading to the formation of sulfate-rich solutions at high temperatures, in line with observations on natural geofluids. In this study, we use synthetic inclusions of fused silica capillary capsules containing saturated Na2SO4 solutions and Na2SO4 crystals to quantitatively investigate the solubility of Na2SO4 at different temperatures in the Na2SO4-SiO2-H2O system. Sulfate concentrations were measured using Raman spectroscopy and calibrated using Cs2SO4 solutions with known concentrations. The solubility of crystalline Na2SO4 dropped slightly when heated from 50 to 225 °C and dramatically from 225 to 313 °C. At 313 °C, the Na2SO4 crystals began to melt, forming immiscible sulfate melt coexisting with the aqueous solution, with or without solid Na2SO4. With the formation of sulfate melt, the solubility of Na2SO4 was reversed to prograde (i.e., solubility increased considerably with increasing temperatures). The solubility of Na2SO4 in the measured solution was significantly higher than that predicted in the absence of SiO2 over the entire temperature range (except for temperatures around 313 °C). This indicates that the presence of SiO2 greatly changes the dissolution behavior of Na2SO4, which may be caused by the formation of a sulfate–silicate intermediates such as Si(OH)4SO42−. Considering that most crustal fluids are silica-saturated, the solubility curve of Na2SO4 obtained in this study can better reflect the characteristics of geofluids when compared to that of Na2SO4-H2O binary system. At temperatures of 313–425 °C, the solubility of Na2SO4 increases with temperature following the function Csulfate = –3173.7/T + 5.9301, where Csulfate and T represent the solubility of Na2SO4 in mol/kg H2O and temperature in Kelvin, respectively. As an application, this temperature-solubility relationship can be used to evaluate the sulfate contents in fluid inclusions that contain sulfate daughter minerals, based on the temperature of sulfate disappearance obtained from microthermometric analysis. The sulfate concentrations of the ore-forming fluids of the giant Maoniuping carbonatite-related rare earth element (REE) deposit (southwest China) were calculated to be 4.67–4.81 m (mol/kg H2O). These sulfate concentrations were then used as internal standards to calibrate the previously reported semi-quantitative results of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis of REE-forming stage fluid inclusions at this deposit. The calculated Ce concentrations in the REE-mineralizing fluid range from 0.42 to 0.49 wt%. The high fluid REE contents suggest that the sulfate-rich fluids are ideal solvents for REE transport. A mass-balance calculation was carried out to evaluate the minimal volume of carbonatite melt that was required for the formation of the giant Maoniuping REE deposit. The result indicates that the carbonatite dikes in the mining area are enough to provide the required fluids and metals, and thus a deep-seated magma chamber is not necessary for ore formation.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3