Эволюция уединенных гидроупругих волн деформации в двух коаксиальных цилиндрических оболочках с физической нелинейностью Шамеля

Author:

Блинков Юрий АнатольевичORCID,Могилевич Лев ИльичORCID,Попов Виктор СергеевичORCID,Попова Елизавета ВикторовнаORCID

Abstract

The paper considers the formulation and solution of the hydroelasticity problem for studying wave processes in the system of two coaxial shells containing fluids in the annular gap between them and in the inner shell. We investigate the axisymmetric case for Kirchhoff–Lave type shells whose material obeys a physical law with a fractional exponent of the nonlinear term (Schamel nonlinearity). The dynamics of fluids in the shells is considered within the framework of the incompressible viscous Newtonian fluid model. The derivation of the Schamel nonlinear equations of shell dynamics makes it possible to develop a mathematical formulation of the problem, which includes the obtained equations, the dynamics equations of two shells, the fluid dynamics equations and the boundary conditions at the shell-fluid interfaces and at the flow symmetry axis. The asymptotic analysis of the problem is performed using perturbation techniques, and the system of two generalized Schamel equations is obtained. This system describes the evolution of nonlinear solitary hydroelastic strain waves in the coaxial shells filled with viscous fluids, taking into account the inertia of the fluid motion. In order to determine the fluid stress at the shell-fluid interfaces, we perform linearization of the fluid dynamics equations for fluids in the annular gap and in the inner shell. The linearized equations are solved by the iterative method. The inertial terms are excluded from the equations in the first iteration, while, in the second iteration, these are the values found in the first iteration. A numerical solution of the system of nonlinear evolution equations is obtained by applying a new difference scheme developed using the Gröbner basis technique. Computational experiments are performed to investigate the effect of fluid viscosity and the inertia of fluid motion in the shells on the wave process. In the absence of fluids in the inner shell, the results of calculations demonstrate that the strain waves in the shells during elastic interactions do not change their shape and amplitude, i.e., they are solitons. The presence of viscous fluid in the inner shell leads to attenuation of the wave process.

Publisher

Institute of Continuous Media Mechanics

Reference33 articles.

1. Gorshkov A.G., Medvedskiy A.L., Rabinskiy L.N., Tarlakovskiy D.V. Volny v sploshnykh sredakh [Waves in continuous media]. Moscow, Fizmatlit, 2004. 472 p.

2. Kudryashov N.A. Metody nelineynoy matematicheskoy fiziki [Methods of nonlinear mathematical physics]. Dolgoprudny, Intellect, 2010. 368 p.

3. Nariboli G.A. Nonlinear longitudinal dispersive waves in elastic rods. J. Math. Phys. Sci., 1970, vol. 4, pp. 64-73.

4. Nariboli G.A., Sedov A. Burgers's-Korteweg-De Vries equation for viscoelastic rods and plates. J. Math. Anal. Appl., 1970, vol. 32, pp. 661-677. https://doi.org/10.1016/0022-247X(70)90290-8

5. Erofeev V.I., Klyueva N.V. Solitons and nonlinear periodic strain waves in rods, plates, and shells (A review). Acoust. Phys., 2002, vol. 48, pp. 643-655.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3