Начальная стадия формирования вихревого течения в индукторе с вращающимися встречно магнитными полями

Author:

Озерных Владимир СергеевичORCID,Лосев Геннадий ЛеонидовичORCID,Гольбрайх ЕфимORCID,Колесниченко Илья ВладимировичORCID

Abstract

In this article, unsteady flows of electrically conductive fluid in a cylindrical cavity under the action of differently directed rotating magnetic fields are investigated. The relevance of the study is due to the presence of such a flow in the flow meter for liquid-metal heat carrier which is currently under development. The subject of study is the process of formation of the spin-up flow stage in a combined inductor of a rotating magnetic field. The acceleration or the spin-up stage is characterized by a significant change in the angular velocity of the liquid and begins with the formation of low pressure areas due to centrifugal forces. The alternation and movement of low and high pressure areas lead to velocity pulsations. For small values of the control parameter, which is the Taylor number, the flow energy gradually increases. In this case, the steady flow consists of two azimuthal and several poloidal vortices with clearly defined structures. When the Taylor number exceeds a critical value, strong pulsations occur in the flow, resulting in the decay of large-scale vortices. The intensity of the current is characterized by the Reynolds number. A power-law relationship with an exponent of 1.57 has been established between the Reynolds and Taylor numbers. It has been found that the time of formation of a steady flow varies from several seconds to tens of seconds, depending on the value of the Taylor number. The estimates of the control parameters have been obtained for a flowmeter operating in a typical mode. It has been shown that for the correct measurement of flow velocity in the flowmeter, it is necessary that that the Taylor numbers be higher than 108. The study is carried out using mathematical modeling and the obtained results are verified by experiment. The average calculated profiles are located within the confidence intervals of the experimental profiles.

Publisher

Institute of Continuous Media Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3