On the Generation of Direct Combustion Noise in Turbulent Non-Premixed Flames

Author:

Ihme Matthias1,Pitsch Heinz

Affiliation:

1. Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 Institute for Combustion Technology, RWTH Aachen, Templergraben 64, 52056 Aachen, Germany

Abstract

Generation of combustion noise in an unconfined turbulent non-premixed flame is investigated. For this, a model is developed, combining Lighthill's acoustic analogy with a flamelet-based combustion model to consistently express all thermochemical quantities by a set of reduced scalars. The model is applied in a large-eddy simulation, and the acoustic pressure in the far field is obtained from an integral solution. Three relevant acoustic source terms with different source characteristics and Mach number scaling are identified. The spatial distribution and spectral characteristics of the acoustic sources are analyzed, and it is shown that the acoustic source due to chemical reaction is the main noise contributor, and is located in the upper part of the flame. Contributions from the acoustic sources due to Reynolds stresses and fluctuating mass flux are found to be virtually insignificant at low frequencies. Discrepancies in the prediction of high-frequency sound pressure level in the jet forward direction were analyzed and are attributed to high-frequency acoustic refraction effects due to variations in sound speed. The directivity exhibits a weak directionality in the 30° forward direction, and some phase cancellation between individual acoustic sources is evident.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3