Surface and Catalytic Properties of the CuO/Al2O3 System as Influenced by Treating with Trace Amounts of MoO3

Author:

Mokhtar M.1

Affiliation:

1. Physical Chemistry Department, National Research Centre, Dokki, Cairo, Egypt

Abstract

A CuO/Al2O3 solid containing 0.2 mol% CuO (0.2CuO/Al2O3) and three MoO3-doped variants of this material were all prepared via the wet impregnation method, the amount of dopant added to the CuO/Al2O3 solid being 0.25, 1.0 or 2.0 mol% MoO3, respectively. All the samples prepared were heated in air to 350, 450 or 600°C, respectively, before being cooled to room temperature and stored. X-Ray studies of these materials showed that the undoped (pure) solid calcined at 350°C exhibited all the diffractions lines associated with the AlO(OH) and CuO phases with an excellent degree of crystallinity. Doping the pure solid resulted in the effective progressive decrease in the degree of crystallinity of both the above-mentioned phases to an extent proportional to the amount of dopant added. Increasing the calcination temperature of the pure and doped solids to 650°C led to a significant decrease in the degree of ordering of CuO due to the formation of poorly crystalline γ-Al2O3 having a much better dispersion power relative to AlO(OH). The specific surface areas of the various samples were found to decrease progressively as the amount of dopant added was increased, especially for samples calcined at 650°C. Increasing the calcination temperature of the pure sample within the range 350–650°C led to a small increase in their catalytic activities in H2O2 decomposition. In contrast, MoO3 treatment followed by calcination of the resulting materials in the range 350–650°C resulted in a significant increase in their catalytic activities in the same catalytic reaction. The maximum increase in the catalytic activity at 30°C attained values of 720%, 735% and 976% for the doped solids calcined at 350, 450 and 650°C, respectively. In contrast, however, such doping brought about a progressive measurable decrease in the catalytic activity of the treated solids towards CO oxidation by O2 when this latter reaction was conducted over the temperature range 150–250°C.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3