Affiliation:
1. Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), Ecole Centrale de Lyon/Université Claude Bernard Lyon 1/UMR CNRS 5509, 36, avenue Guy de Collongue - 69134 Ecully Cedex - France
Abstract
A large-eddy simulation is carried out on a rod-airfoil configuration and compared to an accompanying experiment as well as to a RANS computation. A NACA0012 airfoil (chord c = 0.1 m) is located one chord downstream of a circular rod (diameter d = c/10, Red = 48 000). The computed interaction of the resulting sub-critical vortex street with the airfoil is assessed using averaged quantities, aerodynamic spectra and proper orthogonal decomposition (POD) of the instantaneous flow fields. Snapshots of the flow field are compared to particle image velocimetry (PIV) data. The acoustic far field is predicted using the Ffowcs Williams & Hawkings acoustic analogy, and compared to the experimental far field spectra. The large-eddy simulation is shown to accurately represent the deterministic pattern of the vortex shedding that is described by POD modes 1 & 2 and the resulting tonal noise also compares favourably to measurements. Furthermore higher order POD modes that are found in the PIV data are well predicted by the computation. The broadband content of the aerodynamic and the acoustic fields is consequently well predicted over a large range of frequencies ([0 kHz; 10 kHz]).
Subject
Acoustics and Ultrasonics,Aerospace Engineering
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献