Numerical Simulation of the Sound Radiated by a Turbulent Vortex Ring

Author:

Ran Hongyu1,Colonius Tim1

Affiliation:

1. Department of Mechanical Engineering, California, Institute of Technology, Pasadena, California 91125

Abstract

The acoustic field radiated by a turbulent vortex ring is studied. Direct Numerical Simulations (DNS) of the fully compressible, three-dimensional Navier-Stokes equations are used to generate an axisymmetric vortex ring to which 3D stochastic disturbances are added. The disturbances cause instability and turbulent transition of the vortex ring. Detailed information about temporal evolution of sound pressure level, spectrum and directivity associated with modes of oscillation and their turbulent breakdown are investigated. The peak frequency agrees well with experiments, and the modal directivities agree well with predictions of vortex sound theory. Based on the self-similar decay of the turbulent near field, the self-similar decay of the sound field is investigated. We also explore the connections with jet noise by modeling the jet as a de-correlated train of vortex rings.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3