Mechanisms of Jet Noise Generation: Classical Theories and Recent Developments

Author:

Viswanathan K.1

Affiliation:

1. The Boeing Company, Seattle, WA

Abstract

Lighthill's acoustic analogy and several variants of it have been used to interpret, analyze and explain measured data. In this paper, the validity of the main tenets of the classical theories is examined. This assessment is facilitated by a new comprehensive aeroacoustic database. The overall sound power level does not exactly follow the eighth power of velocity ( Vj/a), but has a weak dependence on jet temperature. It has been believed that an additional source of noise, with either sixth or fourth power variation with velocity, appears for heated jets; there is also a supposed change in spectral shape at 90°, even though effects associated with convection and flow/acoustic interaction are negligible at that angle. The new data indicate that the velocity exponent for overall power is close to eight even at a very high stagnation temperature ratio of 3.2. Moreover, the spectral shape is invariant with jet Mach number and jet temperature. A careful assessment of Tanna's database, which provided the rationale and justification for many of the theoretical models, reveals that this database is unreliable and exhibits incorrect spectral trends. A fundamental tenet of the classical theories, based on both the formalisms of Lighthill-Ffowcs Williams and Lilley, is the notion of moving sources. This idea immediately leads to a Doppler shift for frequency and a convective amplification factor for the noise radiated to the aft angles. It is demonstrated with the new database that there is no experimental evidence for these conjectured effects of moving sources. The jet temperature ratio (static or stagnation), in addition to jet velocity Vj/a, is an independent controlling parameter. New scaling laws that are valid for all angles have been developed with the current database. There are no multiplicative factors with adjustable constants for the spectrum functions; the spectrum function and the velocity exponent depend on the jet temperature ratio and the radiation angle. This relation represents the main difference between the current and the classical formulations. A single exponent collapses the entire spectrum from jets with different Vj/a, but at fixed jet temperature ratio. Therefore, there is no experimental evidence for the main classical ideas of jet noise, as consisting of multi-poles and moving sources, as they are inconsistent with the new data. The idea of two distinct sources that are related to the fine-scale and large-scale turbulence of the jet plume has been investigated. Experimental evidence for the importance of the noise from large coherent structures even at low velocities is offered. The observation at lower and large aft angles of distinct characteristics in, (1) the far field spectral shapes, (2) the directivities of the peak Strouhal number and the OASPL, (3) the directivity of the velocity exponent, and (4) the polar and azimuthal correlations of the farfield pressure, provides strong evidence to support the above view of two different sources of jet noise.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Source and Radiation Properties of an Installed GE F404 Engine: An Overview of Findings;30th AIAA/CEAS Aeroacoustics Conference (2024);2024-05-30

2. Jet-Flap Installation Noise of Pylon Mounted Jet Engine on 3D Wing;30th AIAA/CEAS Aeroacoustics Conference (2024);2024-05-30

3. Characteristics of jet noise: A synthesis;International Journal of Aeroacoustics;2024-05-09

4. Christopher Tam: Brief history and accomplishments;International Journal of Aeroacoustics;2024-05-09

5. Multipole transfer matrix model-based sparse Bayesian learning approach for sound source identification;Applied Acoustics;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3