Comparison of Experimental and Numerical Two-Phase Flows in a Porous Micro-Model

Author:

Crandall Dustin12,Ahmadi Goodarz2,Smith Duane H.1

Affiliation:

1. Geosciences Division, National Energy Technology Laboratory, Morgantown, West Virginia, USA 26507-0880

2. Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York, USA 13699-5725

Abstract

Characterizing two-phase flow in porous media is important to provide estimates of sweep efficiency in enhanced oil recovery and storage estimates in potential geological CO2 sequestration repositories. To further the current understanding of two-phase flow in porous media a micro-model of interconnected channels was designed and fabricated using stereolithography to experimentally study gas-liquid flows. This flowcell was created with a wide variability of throat dimensions to represent naturally occurring porous media. Low flow rate experiments of immiscible two-phase drainage were performed within this cell. Additionally, a computational model for analyzing two-phase flows in the same flowcell was developed and used to simulate conditions not possible with our laboratory settings. The computational model was first tested for the identical conditions used in the experimental studies, and was shown to be in good agreement with the experimentally determined fractal dimension of the invading gas structure, time until breakthrough, and fluid saturation. The numerical model was then used to study two-phase air-water flows in flowcells with the same geometry and different gas-liquid-solid contact angles. The percent saturation of air and the motion of the fluids through the cell were found to vary with changes in these parameters. Finally, to simulate flows expected during geologic carbon sequestration, the fluid properties and interface conditions were set to model the flow of CO2 into a brine-saturated porous medium at representative subsurface conditions. The CO2 flows were shown to have larger gas saturations than the previous air into water studies. Thus the accuracy of the computational model was supported by the flowcell experiments, and the computational model extended the laboratory results to conditions not possible with the apparatus used in the experiments.

Publisher

SAGE Publications

Subject

General Physics and Astronomy,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of two-phase flow in the porous medium through a rectangular curved duct;Experimental and Computational Multiphase Flow;2023-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3