Experimental Study on the Effects of Stacking Sequence on Low Velocity Impact and Quasi-Static Response of Foam Sandwich Composite Structures

Author:

Ahmed Azzam12,Bingjie Zhou1,Ikbal Md. Hasan1,Qingtao Wang1,Obed Akampumuza1,Wei Li13

Affiliation:

1. College of Textiles, Donghua University, Shanghai 201620, China

2. Department of the Textile Engineering, Khartoum, School of Engineering and Technology Industries, Sudan University Science and Technology, Sudan

3. Key Laboratory of Textile Science and Technology, Ministry of Education, Shanghai, 201620, China

Abstract

In this study, investigation has been made on the impact response of twill weave carbon fabric/epoxy foam sandwich composites by subjecting two types of stacking sequences of a sandwich composite structure, SC1 and SC2 to quasi-static indentation and low velocity impact loading. SC1 and SC2 had a sequence of [0/90, ±45, Core, 0/90, ±45], [0/90, ±45, 0/90, ±45, 0/90, Core, 0/90, 0/90, 0/90, 0/90], respectively. This work was done by use of material testing system and an instrumented Drop-Weight Machine (CEAST 9350 drop tower). Foam sandwich composite structures are mainly used in making an Engine Hood. The analysis was done with increase of impact energy on both types of stacking sequences, until complete perforation of the specimens at 25 Joule impact energy occurs. The failure processes of the damaged specimens under the three different impact energies (5 J, 15 J, and 25 J) were evaluated by comparing load–displacement curves. Images of damaged samples were taken from both impacted side and non-impacted side and compared for all impact energies. Cross-sections of damaged specimens were also inspected visually and discussed. The load-displacement curves were obtained to characterize the failure mechanisms in the face sheets and core. Failure modes were also studied by sectioning the samples at the impact location and observed under an optical microscope. The primary damage mode was found due to the fiber fracture, delamination, matrix crack, and foam crack.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3