Structural Damage Identification Using Improved RBF Neural Networks in Frequency Domain

Author:

Machavaram Rajendra1,Shankar K1

Affiliation:

1. Machine Design Section, Mechanical Engineering Department, IIT Madras, Chennai 600036, India

Abstract

This paper presents a novel two stage improved Radial basis function (RBF) neural network for the damage identification of multimember structures in the frequency domain. The improvement of the proposed RBF network is carried out in two stages, viz. (i) first stage damage prediction by conventional RBF network trained with effective input-output patterns and (ii) in the second stage, minimization of the prediction error below the predefined error tolerance (3%) by training the network with patterns from reduced search space located after the first stage prediction. The network effective input patterns are fractional frequency change ratios (FFCs) and damage signature indices (DSIs), and the corresponding output patterns are stiffness values or damage severity of the structure at different damage levels. A Latin hypercube search (LHS) technique is used for finding the effective input-output patterns from the search space to improve the training efficiency. The numerical simulation of structural damage identification for two multimember structures; a six-storey steel structure and a nine-member frame structure, are evaluated with and without addition of 5% random noise to the input patterns using the proposed network. The novel improved RBF network is shown to be a good damage identification strategy for multiple member structures compared to conventional RBF and existing hybrid methods in terms of accuracy and computational effort.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3