Affiliation:
1. Machine Design Section, Mechanical Engineering Department, IIT Madras, Chennai 600036, India
Abstract
This paper presents a novel two stage improved Radial basis function (RBF) neural network for the damage identification of multimember structures in the frequency domain. The improvement of the proposed RBF network is carried out in two stages, viz. (i) first stage damage prediction by conventional RBF network trained with effective input-output patterns and (ii) in the second stage, minimization of the prediction error below the predefined error tolerance (3%) by training the network with patterns from reduced search space located after the first stage prediction. The network effective input patterns are fractional frequency change ratios (FFCs) and damage signature indices (DSIs), and the corresponding output patterns are stiffness values or damage severity of the structure at different damage levels. A Latin hypercube search (LHS) technique is used for finding the effective input-output patterns from the search space to improve the training efficiency. The numerical simulation of structural damage identification for two multimember structures; a six-storey steel structure and a nine-member frame structure, are evaluated with and without addition of 5% random noise to the input patterns using the proposed network. The novel improved RBF network is shown to be a good damage identification strategy for multiple member structures compared to conventional RBF and existing hybrid methods in terms of accuracy and computational effort.
Subject
Building and Construction,Civil and Structural Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献