Statistical Analyses and Parametric Study for Reinforced Concrete Beams Strengthened in Flexure with FRPs

Author:

Baky H. Abdel1,Ebead U.A.2,Neale K.W.3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

2. Civil and Environmental Engineering Department, United Arab Emirates University, P.O. Box 17555, Al Ain, United Arab Emirates

3. Department of Civil Engineering, University of Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1

Abstract

In this paper, statistical analyses and a parametric study are presented for reinforced concrete beams strengthened in flexure using FRP composites. Five variables are considered in this study; namely, the FRP axial stiffness, concrete strength, steel reinforcement ratio, beam depth, and beam span. We aim to develop statistics-based design equations to predict the debonding load, the flexural capacity of the beam cross-section, the maximum deflection at the debonding load, the ductility index, and the debonding strain level in the FRP laminate. Simplifying these statistical models is then carried out to develop robust design equations. These equations hold an advantage over those available in most code specifications because they account for the effect of interactions between various variables on the predicted quantities. The statistical analyses are primarily based on the response surface methodology (RSM) technique. The proposed models are thus referred to as the RSM models. Proposed design equations are then developed by simplifying the RSM models using Monte Carlo simulations and nonlinear regression analysis. Of the five responses considered in the RSM analysis, only the debonding strain level in FRP laminates is considered in the design equations. The data required for the statistical analysis were obtained from finite element models for beams having different combinations of variables. The statistical analyses are followed by a parametric study to investigate the effect of the above five variables and their interactions on the debonding load and the corresponding debonding strain level in the FRP laminate. This involves comparisons in terms of the debonding strain between the predictions of the proposed equation and those of the ACI, fib, Chinese specifications, and Australian standards.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3