Affiliation:
1. Civil Engineering Department, Assiut University, Egypt
2. Department of Urban and Civil Eng., Ibaraki University, Japan
Abstract
This paper presents an analytical solution for the evolution and distribution of shear stresses along the entire bond length of FRP-concrete interfaces due to mode-II fatigue loading. The creep-fatigue interaction and fatigue crack growth after debonding initiation are incorporated into a nonlinear interfacial constitutive law. While the creep-fatigue interaction is represented by the degradation of the interfacial stiffness, the debond growth is governed by a form of the Paris equation and the fracture energy ratio, Gmax/Gc. Furthermore, a new form of energy ratio is adopted to be debond-dependent. Through a series of experimental double-lap shear specimens, the results showed that the debond growth rate ( da/dN) along the FRP-concrete interfaces diminishes with fatigue cycles and that 30% of the static bond capacity of the FRP-concrete interface can be considered as the endurance limit of fatigue loading for FRP-strengthened beams. The agreement between the theoretical predictions and experimental results is valid, with a good degree of accuracy.
Subject
Building and Construction,Civil and Structural Engineering
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献