Treatment of Unidentifiability in Structural Model Updating

Author:

Katafygiotis Lambros S.1,Lam Heung-Fai1,Papadimitriou Costas2

Affiliation:

1. Hong Kong University of Science and Technology, Department of Civil Engineering, Clear Water Bay, Kowloon, Hong Kong

2. University of Thessaly, Department of Mechanical & Industrial Engineering, Pedion Areos, Volos 383 34, Greece

Abstract

The present study addresses the issues of non-uniqueness and unidentifiability arising in structural model updating. A Bayesian probabilistic framework is used for model updating which properly handles the uncertainties due to model error and measurement noise associated with model updating. Uncertainties in the model parameters are quantified by probability density functions (PDF) specifying the relative plausibilities of the possible values of the parameters. The Bayesian formulation is well-suited for updating the PDF of the uncertain model parameters taking into account engineering experience and measured dynamic data. Methods are presented for approximating this updated PDF for the general unidentifiable case for which the region of significant probabilities is concentrated in the neighborhood of a manifold of lower dimension than the original parameter space. This PDF is useful for both model updating and structural damage predictions. Asymptotic approximations are also developed for computing the uncertainties in the model response predictions. It is demonstrated that unidentifiable cases are not treatable by existing results valid only for identifiable cases for which the dimension of the manifold is exactly zero. Two examples involving simulated model error and measurement noise are presented to demonstrate the advantages of the new proposed method in effectively addressing unidentifiability issues.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3