Symmetry Reduction of Structures for Large Rotations

Author:

Leung A.Y.T.1,Wong C.K.2

Affiliation:

1. School of Engineering, The University of Manchester, M13 9PL, UK

2. Civil Engineering, University of Hong Kong, Hong Kong

Abstract

The reduction of the number of unknowns while capturing the essential physical features in a nonlinear analysis of large spatial structures has long been a challenging task for researchers. We approach the problem of large displacement and large rotation analysis of space frame structures by means of group theory and substructuring technique. An accurate nonlinear analysis requires an element that accurately reflects the nonlinear behavior of the structure being modeled. Therefore details of the element formulations and updating procedure for large rotation will be given. The present formulation is capable of modeling a structure (with small to moderate axial force in its members) using one element per member, so that the number of degrees of freedom could be kept to minimum. The present methodology is based on the approach in a paper by Healey and Treacy. Axial deformation only was considered and matrix-iteration was used. We extend their idea to deal with the analysis of symmetry structures under going large displacement and large rotation in bending. Instead of matrix-iteration, we find that the basis vectors required to project the solution space into its symmetry subspace can be easily determined from the projection matrix. Excellent reduction can be obtained using the present method. The reduction efficiency depends on the symmetry of the structures. The higher the degree of symmetry the structure possesses, the greater the reduction will be.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3