Expansion and Hepatic Differentiation of Adult Blood-Derived CD34+ Progenitor Cells and Promotion of Liver Regeneration After Acute Injury

Author:

Hu Min1,Li Shaowei1,Menon Siddharth1,Liu Bo2,Hu Michael S.134,Longaker Michael T.13,Lorenz H. Peter1

Affiliation:

1. Division of Plastic Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA

2. Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA

3. Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA

4. Department of Surgery, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA

Abstract

Abstract The low availability of functional hepatocytes has been an unmet demand for basic scientific research, new drug development, and cell-based clinical applications for decades. Because of the inability to expand hepatocytes in vitro, alternative sources of hepatocytes are a focus of liver regenerative medicine. We report a new group of blood-derived CD34+ progenitor cells (BDPCs) that have the ability to expand and differentiate into functional hepatocyte-like cells and promote liver regeneration. BDPCs were obtained from the peripheral blood of an adult mouse with expression of surface markers CD34, CD45, Sca-1, c-kit, and Thy1.1. BDPCs can proliferate in vitro and differentiate into hepatocyte-like cells expressing hepatocyte markers, including CK8, CK18, CK19, α-fetoprotein, integrin-β1, and A6. The differentiated BDPCs (dBDPCs) also display liver-specific functional activities, such as glycogen storage, urea production, and albumin secretion. dBDPCs have cytochrome P450 activity and express specific hepatic transcription factors, such as hepatic nuclear factor 1α. To demonstrate liver regenerative activity, dBDPCs were injected into mice with severe acute liver damage caused by a high-dose injection of carbon tetrachloride (CCl4). dBDPC treatment rescued the mice from severe acute liver injury, increased survival, and induced liver regeneration. Because of their ease of access and application through peripheral blood and their capability of rapid expansion and hepatic differentiation, BDPCs have great potential as a cell-based therapy for liver disease. Significance Hematopoietic stem/progenitor cell expansion and tissue-specific differentiation in vitro are challenges in regenerative medicine, although stem cell therapy has raised hope for the treatment of liver diseases by overcoming the scarcity of hepatocytes. This study identified and characterized a group of blood-derived progenitor cells (BDPCs) from the peripheral blood of an adult mouse. The CD34+ progenitor-dominant BDPCs were rapidly expanded and hepatically differentiated into functional hepatocyte-like cells with our established coculture system. BDPC treatment increased animal survival and produced full regeneration in a severe liver injury mouse model caused by CCl4. BDPCs could have potential for liver cell therapies.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3