Human Müller Glia with Stem Cell Characteristics Differentiate into Retinal Ganglion Cell (RGC) Precursors In Vitro and Partially Restore RGC Function In Vivo Following Transplantation

Author:

Singhal Shweta1,Bhatia Bhairavi1,Jayaram Hari1,Becker Silke1,Jones Megan F.1,Cottrill Phillippa B.1,Khaw Peng T.1,Salt Thomas E.2,Limb G. Astrid1

Affiliation:

1. Divisions of Ocular Biology and Therapeutics and, NIHR BRC University College London Institute of Ophthalmology and Moorfields Eye Hospital, London, United Kingdom

2. Visual Neurosciences, NIHR BRC University College London Institute of Ophthalmology and Moorfields Eye Hospital, London, United Kingdom

Abstract

Abstract Müller glia with stem cell characteristics have been identified in the adult human eye, and although there is no evidence that they regenerate retina in vivo, they can be induced to grow and differentiate into retinal neurons in vitro. We differentiated human Müller stem cells into retinal ganglion cell (RGC) precursors by stimulation with fibroblast growth factor 2 together with NOTCH inhibition using the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). Differentiation into RGC precursors was confirmed by gene and protein expression analysis, changes in cytosolic [Ca2+] in response to neurotransmitters, and green fluorescent protein (GFP) expression by cells transduced with a transcriptional BRN3b-GFP reporter vector. RGC precursors transplanted onto the inner retinal surface of Lister hooded rats depleted of RGCs by N-methyl-d-aspartate aligned onto the host RGC layer at the site of transplantation but did not extend long processes toward the optic nerve. Cells were observed extending processes into the RGC layer and expressing RGC markers in vivo. This migration was observed only when adjuvant anti-inflammatory and matrix degradation therapy was used for transplantation. RGC precursors induced a significant recovery of RGC function in the transplanted eyes as determined by improvement of the negative scotopic threshold response of the electroretinogram (indicative of RGC function). The results suggest that transplanted RGC precursors may be capable of establishing local interneuron synapses and possibly release neurotrophic factors that facilitate recovery of RGC function. These cells constitute a promising source of cells for cell-based therapies to treat retinal degenerative disease caused by RGC dysfunction.

Funder

Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

Reference44 articles.

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3