Ozone treatments to induce systemic-acquired resistance in leaves of potted vines: molecular responses and NIR evaluation for identifying effective dose and exposition duration

Author:

Modesti MargheritaORCID,Forniti Roberto,Brunori Elena,Mencarelli Fabio,Bellincontro Andrea,Tonutti PietroORCID

Abstract

The European Community has recently imposed considerable restrictions on the use of pesticides, with the establishment of a regulatory framework for the sustainable use of agro-chemicals. However, in the viticulture sector, the intensive use of chemical pesticides, as well as sulfur and copper, is often required. Recently, ozone has been proposed as a possible environmentally friendly tool for controlling the development of pests on vines. However, little is known about the parameters linked to the practical application of ozone for controlling grapevine pests and how it triggers plant defence mechanisms. The main aim of this preliminary study was to determine the concentration of ozone and exposure duration in a treatment for stimulating the expression of systemic acquired resistance (SAR)-related genes, without inducing toxic effects and affecting vine health. In the first trial, three different combinations of ozone concentration and duration of treatment were tested on potted grapevines: i) gaseous ozone at 300 ppb for 12 hours, ii) gaseous ozone at 100 ppb for 6 hours, and iii) gaseous ozone at 100 ppb for 3 hours. Based on the results of the first trial, the potted vines were treated with just 100 ppb for 3 hours in a second trial. Leaves at different developmental stages were sampled. The expression level of systemic acquired resistance-related genes was analysed 12 hours and 7 days after each treatment. Furthermore, physiological parameters and NIR spectra were analysed. Ozone induced a transient up-regulation (limited to 12 hours after the treatments) of chitinases, β-1,3-glucanase and glutathione-S-transferase. On the other hand, pathogen-related (PR) genes showed a more persistent over-expression. The ozone treatment selectively affected the stomatal conductance depending on the different ozone concentrations. Detected NIR spectra revealed significant structural changes in ozone-treated plants, especially in leaves exposed to higher concentrations of ozone. These results suggest that ozone is able to transiently stimulate the expression of some resistance-related genes even at low and non-toxic doses for the vine leaves.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3