Abstract
Lipid nutrition is an important factor for yeast during alcoholic fermentation. Although recent research reports have revisited the role of sterols during alcoholic fermentation, our knowledge of lipids assimilation and volatile compound biogenesis remains partial. This study aimed to find out more about the impact of grape must phytosterol content on fermentative kinetics, nitrogen assimilation by yeast and fermentative aroma synthesis. To that end, experimental fermentations were performed in synthetic and Chardonnay musts supplemented with different phytosterol concentrations (0, 1, 3 and 5 mg/L). Sterols addition significantly increased the maximum CO2 production rate while reducing fermentation duration. This can be explained by higher nitrogen assimilation by yeast due to sterols, which leads to higher yeast growth and better viability at the end of the fermentation process. Regarding the aromatic profile, sterol addition also significantly increased acetate esters, ethyl esters, fusel alcohols and medium-chain fatty acids production. These new advances highlight the major role of phytosterols in fermentation control and wine aroma profile.
Subject
Horticulture,Food Science