On the Karlsson–Nussbaum conjecture for resolvents of nonexpansive mappings
-
Published:2023-01-15
Issue:1
Volume:48
Page:153-161
-
ISSN:2737-114X
-
Container-title:Annales Fennici Mathematici
-
language:
-
Short-container-title:Ann. Fenn. Math.
Author:
Huczek Aleksandra,Wiśnicki Andrzej
Abstract
Let \(D\subset \mathbb{R}^{n}\) be a bounded convex domain and \(F\colon D\rightarrow D\) a 1-Lipschitz mapping with respect to the Hilbert metric \(d\) on \(D\) satisfying condition \(d(sx+(1-s)y,sz+(1-s)w)\leq \max \{d(x,z),d(y,w)\}\). We show that if \(F\) does not have fixed points, then the convex hull of the accumulation points (in the norm topology) of the family \(\{R_{\lambda}\}_{\lambda >0}\) of resolvents of \(F\) is a subset of \(\partial D\). As aconsequence, we show a Wolff-Denjoy type theorem for resolvents of nonexpansive mappings acting on an ellipsoid \(D\).
Publisher
Finnish Mathematical Society
Subject
General Mathematics