Monitoring and Analysis of Air Quality in Zonguldak Province by Remote Sensing
-
Published:2024-06-28
Issue:
Volume:
Page:
-
ISSN:2687-4997
-
Container-title:Turkish Journal of Remote Sensing
-
language:tr
-
Short-container-title:TUZAL
Affiliation:
1. ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ, ZONGULDAK MESLEK YÜKSEKOKULU
Abstract
While air pollution poses a major threat to environmental health, monitoring and understanding this problem is extremely important. Especially in industrial areas, it is a vital requirement to monitor the levels of pollutants such as Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), Ozone (O3), Formaldehyde (HCHO) and Carbon Monoxide (CO) in the atmosphere. This situation becomes even more critical in areas such as Zonguldak where industrial activities are intense. In this study, the Sentinel-5P TROPOMI satellite and Google Earth Engine (GEE) platform were used to determine the air quality values in Zonguldak province. The study extracted data using coding method to determine the values of pollutants such as NO2, SO2, O3, HCHO and CO in the atmosphere between 2020 and-2022. Coding was performed using satellite data on the GEE platform and thematic maps and graphs were created with the data obtained. According to the results obtained, it was observed that air pollution is intense especially in Ereğli district and Filyos town. Such analyses are extremely important in terms of understanding the pollution levels in certain regions and evaluating their possible environmental impacts. These findings can provide important clues for taking protective measures for environmental health and reducing the effects of industrial activities on the environment.
Publisher
Turkish Journal of Remote Sensing
Reference22 articles.
1. Amani, M., Ghorbanian, A., Ahmadi S. A., Moghimi, A., Mirmazloumi, S. M., Hamed, S., Moghaddam, A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q. & Brisco, B. (2020). Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1-26. https://doi.org/10.1109/JSTARS.2020.3021052 2. Andre, L., Boissière J., Reboul, C., Perrier, R., Zalvidea, S., Meyer, G., Thireau, J., Tanguy, S., Bideaux P. & Hayot M. (2010). Carbon monoxide pollution promotes cardiac remodeling and ventricular arrhythmia in healthy rats. American journal of respiratory and critical care medicine, 181(6), 587-595.
https://doi.org/10.1164/rccm.200905-0794OC 3. Badarinath, K., Kharol, S. K., Prasad, V. K., Sharma, A. R., Reddi, E., Kambezidis, H. & Kaskaoutis, D. (2008). Influence of natural and anthropogenic activities on UV Index variations–a study over tropical urban region using ground-based observations and satellite data. J Atmos Chem., 59(3), 219–236. https://doi.org/10.1007/s10874-008-9103-4 4. Bechle, M. J., Millet, D. B. & Marshall, J. D. (2013). Remote sensing of NO2 exposure: Satellite and ground-based measurement in a large urban area. Atmospheric Environment, 69, 345-353. https://doi.org/10.1016/j.atmosenv.2012.11.046 5. Blair, A., Saracci, R., Stewart P. A., Hayes, R. & Shy, C. (1990). Epidemiologic evidence on the relationship between formaldehyde exposure and cancer. Scand. J. Work. Environ. Health, 16, 381–393.
|
|