Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant
-
Published:2023
Issue:3
Volume:214
Page:411-428
-
ISSN:1064-5616
-
Container-title:Sbornik: Mathematics
-
language:en
-
Short-container-title:Sb. Math.
Author:
Leont'eva Anastasiya Olegovna1
Affiliation:
1. Ural Federal University named after the first President of Russia
B. N. Yeltsin, Ekaterinburg, Russia
Abstract
The Bernstein-Szegő inequality for the Weyl derivative of real order $\alpha\geqslant 0$ of trigonometric polynomials of degree $n$ is considered. The aim is to find values of the parameters for which the sharp constant in this inequality is equal to $n^\alpha$ (the classical value) in all $L_p$-spaces, $0\leqslant p\leqslant\infty$. The set of all such $\alpha$ is described for some important particular cases of the Weyl-Szegő derivative, namely, for the Riesz derivative and for the conjugate Riesz derivative, for all $n\in\mathbb N$.
Bibliography: 22 titles.
Funder
Russian Science Foundation
Publisher
Steklov Mathematical Institute
Subject
Algebra and Number Theory
Reference31 articles.
1. Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung;H. Weyl;Vierteljschr. Naturforsch. Ges. Zürich,1917
2. The Szegö inequality for derivatives of a conjugate trigonometric polynomial in $L_0$;V. V. Arestov;Mat. Zametki,1994
3. The Szegö inequality for derivatives of a conjugate trigonometric polynomial inL o
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献