Affiliation:
1. Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract
Дается ответ на вопрос М. Лори и Б. Стейнберга о разрешимости проблемы вхождения в подмоноиды конечно порожденной нильпотентной группы. А именно, строится конечно порожденный подмоноид свободной нильпотентной группы ступени $2$ достаточно большого ранга $r$, проблема вхождения в который алгоритмически неразрешима. Отсюда следует существование подмоноида с аналогичным свойством в любой свободной нильпотентной группе ступени $l \geqslant 2$ ранга $r$. Доказательство основывается на неразрешимости десятой проблемы Гильберта.
Библиография: 28 наименований.
Funder
Ministry of Science and Higher Education of the Russian Federation
Publisher
Steklov Mathematical Institute
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献