Lower Extremity Muscle Activation and Knee Flexion During a Jump-Landing Task

Author:

Walsh Meghan1,Boling Michelle C.2,McGrath Melanie3,Blackburn J. Troy1,Padua Darin A.4

Affiliation:

1. Campus Health Services, The University of North Carolina at Chapel Hill;

2. Orthopedic and Sports Injury Prevention Research Laboratory, University of North Florida, Jacksonville;

3. Department of Health, Physical Education, and Recreation, University of Nebraska, Omaha; §Neuromuscular Research Laboratory and

4. Sports Medicine Research Laboratory, The University of North Carolina at Chapel Hill

Abstract

Context: Decreased sagittal-plane motion at the knee during dynamic tasks has been reported to increase impact forces during landing, potentially leading to knee injuries such as anterior cruciate ligament rupture. Objective: To describe the relationship between lower extremity muscle activity and knee-flexion angle during a jump-landing task. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: Thirty recreationally active volunteers (15 men, 15 women: age = 21.63 ± 2.01 years, height = 173.95 ± 11.88 cm, mass = 72.57 ± 14.25 kg). Intervention(s): Knee-flexion angle and lower extremity muscle activity were collected during 10 trials of a jump-landing task. Main Outcome Measure(s): Simple correlation analyses were performed to determine the relationship between each knee-flexion variable (initial contact, peak, and displacement) and electromyographic amplitude of the gluteus maximus (GMAX), quadriceps (VMO and VL), hamstrings, gastrocnemius, and quadriceps : hamstring (Q : H) ratio. Separate forward stepwise multiple regressions were conducted to determine which combination of muscle activity variables predicted each knee-flexion variable. Results: During preactivation, VMO and GMAX activity and the Q : H ratio were negatively correlated with knee-flexion angle at initial contact (VMO: r = −0.382, P = .045; GMAX: r = −0.385, P = .043; Q : H ratio: r = −0.442, P = .018). The VMO, VL, and GMAX deceleration values were negatively correlated with peak knee-flexion angle (VMO: r = −0.687, P = .001; VL: r = −0.467, P = .011; GMAX: r = −0.386, P = .043). The VMO and VL deceleration values were negatively correlated with knee-flexion displacement (VMO: r = −0.631, P = .001; VL: r = −0.453, P = .014). The Q : H ratio and GM activity predicted 34.7% of the variance in knee-flexion angle at initial contact (P = .006). The VMO activity predicted 47.1% of the variance in peak knee-flexion angle (P = .001). The VMO and VL activity predicted 49.5% of the variance in knee-flexion displacement (P = .001). Conclusions: Greater quadriceps and GMAX activation and less hamstrings and gastrocnemius activation were correlated with smaller knee-flexion angles. This landing strategy may predispose an individual to increased impact forces due to the negative influence on knee-flexion position.

Publisher

Journal of Athletic Training/NATA

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3