Kinetic and Kinematic Characteristics of Running During Regular Training Sessions for Collegiate Distance Runners Using Shoe Based Wearable Sensors

Author:

Long Tom1,Pavicic Peri1,Stapleton Drue1

Affiliation:

1. 1: Rider University, 2083 Lawrenceville Rd, Lawrenceville, NJ 08648, Department of Biology, Behavioral Neuroscience, and Health Sciences, longt@rider.edu, Pavicicp@rider.edu, dstapleton@rider.edu (609) 895-5426

Abstract

Context: Assessment of running mechanics has traditionally been conducted in laboratory settings; the advancement of wearable technology permits data collection during outdoor training sessions. Exploring changes in running mechanics across training session types may assist runners, coaches, and sports medicine clinicians in improving performance and managing injury risk. Objective: The purpose of this investigation was to examine changes in running mechanics based on routine training session types. Design: Descriptive observational study Setting: Field-based, university Methods: Running mechanics data (i.e., impact g (PI), stride length(SL), braking g (BF), total shock, and cadence, and ground contact time (GCT)) for National Collegiate Athletic Association (NCAA) Division 1 distance runners (males, n=20) were collected using RunScribe™ sensors mounted to the laces during training sessions (long run (LR), interval run (IR), and/or recovery run (RR)) during a one-week period. Results: Repeated measures ANCOVA with Greenhouse Geisser correction, with training session pace as a covariate, determined no statistically significant differences in spatiotemporal or kinetic measures across the three training session types. Cadence and SL were inversely related in all training sessions (LR: r=−0.673, p=0.004; IR: r=−0.893, p=<0.001; RR: r=−0.549, p=0.023). Strong positive correlations were seen between PI and total shock in all training sessions (LR: r=0.894, p<0.001; IR: r=0.782, p=<0.001; RR: r=0.922, p<0.001). GCT increased with SL during LR training sessions (r=0.551, p=0.027) and decreased with BF in IR training sessions (r=−0.574, p=0.016) and cadence in RR training sessions (r=−0.487, p=0.048). Conclusion: Running mechanics were not statistically different between training session type in collegiate distance runners when controlling for training session pace. The use of wearable technology provides a tool to provide necessary data during overland training to inform training and program design.

Publisher

Journal of Athletic Training/NATA

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3