Molecular docking study of Lens culinaris L. phytochemicals to NS3-NS2B protease of dengue virus serotype 2

Author:

Bondhon Tohmina Afroze,Hasan Anamul,Jannat Khoshnur,Paul Alok,Jahan Rownak,Mahboob Tooba,Nissapatorn Veeranoot,Dolma Karma G,Pereira Maria L.,Wiart Christophe,Rahmatullah Mohammed

Abstract

Forty-three phytochemicals present in Lens culinaris were evaluated through in-silico molecular docking studies for their binding affinities to the NS2B-NS3 activator-protease complex of dengue virus serotype 2 (DENV-2). Among the various compounds tested, flavonoids (flavanols,favonols, proanthocyanidins, flavanones, flavones, and anthocyanins) demonstrated high binding affinities for the protease complex. Eriodictyol-7-O-rutinoside showed the least predicted binding energy at -9.1 kcal/mol followed by luteolin-7-O-glucoside at -8.8 kcal/mol. Glycosidic linkages appeared to enhance the binding affinities of flavonoids, aldohexoses being more potent than aldopentoses. Besides flavonoids, other classes of compounds demonstrating high binding affinities for the protease were carotenoids, phytosterols, and polyphenolic compounds like resveratrol and trans-resveratrol 3-O-b-glucoside (piceid), the latter showing predicted binding energy of -8.5 kcal/mol versus predicted binding energy of -7.2 kcal/mol for resveratrol. The 2D interactions of four high binding affinity compounds like eriodictyol, eriodictyol-7-O-rutinoside, catechin gallate, and luteolin-7-O-glucoside showed that all four compounds bound to the active site of the NS3 protease and not to the activator NS2B. Lys74 of NS3 was the common amino acid interacting with all four phytochemicals. Analysis of physicochemical properties of the compounds (Lipinski's Rule of 5) showed that the high binding affinity compounds have less than two violations, indicating that they can serve as useful lead compounds or as dengue virus serotype 2 therapeutics.

Publisher

German Multidisciplinary Publishing Center

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3