Affiliation:
1. University of Illinois at Chicago
2. University of Chinese Academy of Sciences
3. Kyoto University
Abstract
Understanding how and whether local perturbations can affect the entire quantum system is a fundamental step in understanding non-equilibrium phenomena such as thermalization. This knowledge of non-equilibrium phenomena is applicable for quantum computation, as many quantum computers employ non-equilibrium processes for computations. In this paper, we investigate the evolution of bi- and tripartite operator mutual information of the time-evolution operator and the Pauli spin operators in the one-dimensional Ising model with magnetic field and the disordered Heisenberg model to study the properties of quantum circuits. In the Ising model, the early-time evolution qualitatively follows an effective light cone picture, and the late-time value is well described by Page’s value for a random pure state. In the Heisenberg model with strong disorder, we find that many-body localization prevents the information from propagating and being delocalized. We also find an effective Ising Hamiltonian that describes the time evolution of bi- and tripartite operator mutual information for the Heisenberg model in the large disorder regime.
Funder
Japan Society for the Promotion of Science
Subject
Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献