Abstract
The introduction of Neural Quantum States (NQS) has recently given a new twist to variational Monte Carlo (VMC). The ability to systematically reduce the bias of the wave function ansatz renders the approach widely applicable. However, performant implementations are crucial to reach the numerical state of the art. Here, we present a Python codebase that supports arbitrary NQS architectures and model Hamiltonians. Additionally leveraging automatic differentiation, just-in-time compilation to accelerators, and distributed computing, it is designed to facilitate the composition of efficient NQS algorithms.
Funder
Baden-Württemberg Stiftung
Deutsche Forschungsgemeinschaft
Gauss Centre for Supercomputing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献