Affiliation:
1. Heidelberg University
2. Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut
3. Fraunhofer Institute for Open Communication Systems
Abstract
The matrix element method is widely considered the ultimate LHC inference tool for small event numbers. We show how a combination of two conditional generative neural networks encodes the QCD radiation and detector effects without any simplifying assumptions, while keeping the computation of likelihoods for individual events numerically efficient. We illustrate our approach for the CP-violating phase of the top Yukawa coupling in associated Higgs and single-top production. Currently, the limiting factor for the precision of our approach is jet combinatorics.
Funder
Baden-Württemberg Stiftung
Deutsche Forschungsgemeinschaft
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献