Affiliation:
1. University of California, San Diego
Abstract
We extend the entanglement bootstrap program to (3+1)-dimensions. We study knotted excitations of (3+1)-dimensional liquid topological orders and exotic fusion processes of loops. As in previous work in (2+1)-dimensions [Ann. Phys. 418, 168164
(2020), Phys. Rev. B 103, 115150 (2021)], we define a variety of superselection sectors and fusion spaces from two axioms on the ground state entanglement entropy. In particular, we identify fusion spaces associated with knots. We generalize the information convex set to a new class of regions called immersed regions, promoting various theorems to this new context. Examples from solvable models are provided; for instance, a concrete calculation of knot multiplicity shows that the knot complement of a trefoil knot can store quantum information. We define spiral maps that allow us to understand consistency relations for torus knots as well as spiral fusions of fluxes.
Funder
Simons Foundation
United States Department of Energy
University of California
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献