Gaussian-state Ansatz for the non-equilibrium dynamics of quantum spin lattices

Author:

Menu Raphaël1,Roscilde Tommaso2

Affiliation:

1. Saarland University

2. Laboratoire de Physique de l'ENS de Lyon

Abstract

The study of non-equilibrium dynamics is one of the most important challenges of modern quantum many-body physics, in relationship with fundamental questions in quantum statistical mechanics, as well as with the fields of quantum simulation and computing. In this work we propose a Gaussian Ansatz for the study of the nonequilibrium dynamics of quantum spin systems. Within our approach, the quantum spins are mapped onto Holstein-Primakoff bosons, such that a coherent spin state - chosen as the initial state of the dynamics - represents the bosonic vacuum. The state of the system is then postulated to remain a bosonic Gaussian state at all times, an assumption which is exact when the bosonic Hamiltonian is quadratic; and which is justified in the case of a nonlinear Hamiltonian if the boson density remains moderate. We test the accuracy of such an Ansatz in the paradigmatic case of the S=1/2S=1/2 transverse-field Ising model, in one and two dimensions, initialized in a state aligned with the applied field. We show that the Gaussian Ansatz, when applied to the bosonic Hamiltonian with nonlinearities truncated to quartic order, is able to reproduce faithfully the evolution of the state, including its relaxation to the equilibrium regime, for fields larger than the critical field for the paramagnetic-ferromagnetic transition in the ground state. In particular the spatio-temporal pattern of correlations reconstructed via the Gaussian Ansatz reveals the dispersion relation of quasiparticle excitations, exhibiting the softening of the excitation gap upon approaching the critical field. Our results suggest that the Gaussian Ansatz correctly captures the essential effects of nonlinearities in quantum spin dynamics; and that it can be applied to the study of fundamental phenomena such as quantum thermalization and its breakdown.

Funder

Agence Nationale de la Recherche

QuantERA

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3