Hamiltonian Truncation Effective Theory

Author:

Cohen Timothy1,Farnsworth Kara2,Houtz Rachel3,Luty Markus4

Affiliation:

1. University of Oregon

2. Case Western Reserve University

3. Durham University

4. University of California, Davis

Abstract

Hamiltonian truncation is a non-perturbative numerical method for calculating observables of a quantum field theory. The starting point for this method is to truncate the interacting Hamiltonian to a finite-dimensional space of states spanned by the eigenvectors of the free Hamiltonian H_0H0 with eigenvalues below some energy cutoff E_\text{max}Emax. In this work, we show how to treat Hamiltonian truncation systematically using effective field theory methodology. We define the finite-dimensional effective Hamiltonian by integrating out the states above E_\text{max}Emax. The effective Hamiltonian can be computed by matching a transition amplitude to the full theory, and gives corrections order by order as an expansion in powers of 1/E_\text{max}1/Emax. The effective Hamiltonian is non-local, with the non-locality controlled in an expansion in powers of H_0/E_\text{max}H0/Emax. The effective Hamiltonian is also non-Hermitian, and we discuss whether this is a necessary feature or an artifact of our definition. We apply our formalism to 2D \lambda\phi^4λϕ4 theory, and compute the the leading 1/E_\text{max}^21/Emax2 corrections to the effective Hamiltonian. We show that these corrections nontrivially satisfy the crucial property of separation of scales. Numerical diagonalization of the effective Hamiltonian gives residual errors of order 1/E_\text{max}^31/Emax3, as expected by our power counting. We also present the power counting for 3D \lambda \phi^4λϕ4 theory and perform calculations that demonstrate the separation of scales in this theory.

Funder

Science and Technology Facilities Council

Simons Foundation

United States Department of Energy

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3