Universal features of higher-form symmetries at phase transitions

Author:

Wu Xiao-Chuan1,Jian Chao-Ming2,Xu Cenke1

Affiliation:

1. University of California, Santa Barbara

2. Cornell University

Abstract

We investigate the behavior of higher-form symmetries at various quantum phase transitions. We consider discrete 1-form symmetries, which can be either part of the generalized concept “categorical symmetry” (labelled as \tilde{Z}_N^{(1)}Z̃N(1)) introduced recently, or an explicit Z_N^{(1)}ZN(1) 1-form symmetry. We demonstrate that for many quantum phase transitions involving a Z_N^{(1)}ZN(1) or \tilde{Z}_N^{(1)}Z̃N(1) symmetry, the following expectation value \langle \left( O_\mathcal{C}\right)^2 \rangle(O𝒞)2 takes the form \langle \left( \log O_\mathcal{C} \right)^2 \rangle \sim - \frac{A}{\epsilon} P + b \log P(logO𝒞)2AϵP+blogP, where O_\mathcal{C}O𝒞 is an operator defined associated with loop \mathcal{C}𝒞 (or its interior \mathcal{A}𝒜), which reduces to the Wilson loop operator for cases with an explicit Z_N^{(1)}ZN(1) 1-form symmetry. PP is the perimeter of \mathcal{C}𝒞, and the b \log PblogP term arises from the sharp corners of the loop \mathcal{C}𝒞, which is consistent with recent numerics on a particular example. bb is a universal microscopic-independent number, which in (2+1)d(2+1)d is related to the universal conductivity at the quantum phase transition. bb can be computed exactly for certain transitions using the dualities between (2+1)d(2+1)d conformal field theories developed in recent years. We also compute the "strange correlator" of O_\mathcal{C}O𝒞: S_{\mathcal{C}} = \langle 0 | O_\mathcal{C} | 1 \rangle / \langle 0 | 1 \rangleS𝒞=0|O𝒞|1/0|1 where |0\rangle|0 and |1\rangle|1 are many-body states with different topological nature.

Funder

David and Lucile Packard Foundation

National Science Foundation

Simons Foundation

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3