Affiliation:
1. Sun Yat-sen University
2. Duke University
Abstract
Dynamical mean-field theory is a powerful physics tool used to analyze the typical behavior of neural networks, where neurons can be recurrently connected, or multiple layers of neurons can be stacked. However, it is not easy for beginners to access the essence of this tool and the underlying physics. Here, we give a pedagogical introduction of this method in a particular example of random neural networks, where neurons are randomly and fully connected by correlated synapses and therefore the network exhibits rich emergent collective dynamics. We also review related past and recent important works applying this tool. In addition, a physically transparent and alternative method, namely the dynamical cavity method, is also introduced to derive exactly the same results. The numerical implementation of solving the integro-differential mean-field equations is also detailed, with an illustration of exploring the fluctuation dissipation theorem.
Funder
Basic and Applied Basic Research Foundation of Guangdong Province
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Eight challenges in developing theory of intelligence;Frontiers in Computational Neuroscience;2024-07-24