Pycnometric-Additive Determining of the Degree of Coating of High-Strength Synthetic Diamond Grinding Powders using the Actual 3D Morphology of their Grains

Author:

Petasyuk G.A.,Bochechka O.O.,Lavrinenko V.I.,Poltoratskyi V.G.,Syrota Yu.V.,Bilochenko V.P.

Abstract

The methodological components of direct and indirect analytical determining of the degree of coating of synthetic diamond grinding powders are analyzed. It has been established that the weight method most used in practice for determining this technological property of grinding powder is not universal for different methods of applying the coating. More universal in this regard, as the review of publications showed, is the well-known indirect-analytical method based on the pycnometric-additive approach. An improved variant of this method is proposed, aimed at application to high-strength synthetic diamond grinding powders. The method takes into account the peculiarities of the 3D morphology of the grains of such powders. Using the example of grinding powder AC300 500/400, the grains of which were coated with a solution of a mixture of boron oxide, sodium silicate, and titanium carbide, the advantages of using the proposed method are illustrated. The results of a comparison of determining the degree of coating by a known method and its improved variant are presented.

Publisher

Lifescience Global

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3