Fake News Detection in Low Resource Languages using SetFit Framework

Author:

Abdedaiem Amin,Dahou Abdelhalim Hafedh,Cheragui Mohamed AmineORCID

Abstract

Social media has become an integral part of people’s lives, resulting in a constant flow of information. However, a concerning trend has emerged with the rapid spread of fake news, attributed to the lack of verification mechanisms. Fake news has far-reaching consequences, influencing public opinion, disrupting democracy, fuelingsocial tensions, and impacting various domains such as health, environment, and the economy. In order to identify fake news with data sparsity, especially with low resources languages such as Arabic and its dialects, we propose a few-shot learning fake news detection model based on sentence transformer fine-tuning, utilizing no crafted prompts and language model with few parameters. The experimental results prove that the proposed method can achieve higher performances with fewer news samples. This approach provided 71% F1 score on the Algerian dialect fake news dataset and 70% F1 score on the Modern Standard Arabic (MSA) version of the same dataset, which proves that the approach can work on the standard Arabic and its dialects. Therefore, the proposed model can identify fake news in several domains concerning the Algerian community such as politics, COVID-19, tourism, e-commerce, sport, accidents, and car prices.

Publisher

IBERAMIA: Sociedad Iberoamericana de Inteligencia Artificial

Subject

Artificial Intelligence,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3