Abstract
Most wall panels in operating multi-storey residential buildings are in a complex stress-strain state under the influence of vertical and horizontal loads, such as their own weight, wind, etc. These features must be taken into account in the calculation in order to ensure operational safety. The combination of vertical and horizontal forces acting simultaneously for three-layer bending elements leads to the fact that the boundary between the compressed and tensile zones not only moves from one layer to another, but also has a different geometric shape depending on the ratio between the vertical and horizontal load. The stress-strain state during the formation of normal cracks in three-layer bendable reinforced concrete elements is caused by the impact on layers of different concretes. The formation of normal cracks occurs due to the achievement of ultimate tensile strength by the most stretched concrete under the influence of external loads. Since three-layer reinforced concrete elements consist of two outer layers (reinforced concrete) and a middle layer (lightweight concrete), when such an element bends, the outer layers are subject to compression, and the middle layer is subject to tension. The boundary of the compressed zone can be located either in one of the outer layers or intersect the middle layer, which falls into both the compressed and stretched zones. To analyze the stress-strain state during the formation of normal cracks, it is necessary to take into account the fol-lowing parameters: geometric characteristics of the element (dimensions and shape of the section, layer thickness, etc.), physical and mechanical properties of concrete (compressive and tensile strength, elastic modulus, Poisson's ratio, crack resistance coefficient, etc.), characteristics of reinforcement (class, diameter, pitch of bars, etc.) and its location in the section.
Publisher
Sole Proprietor Company Klyueva M.M.