A Novel Feature Selection Method Based on Maximum Likelihood Logistic Regression for Imbalanced Learning in Software Defect Prediction

Author:

Bashir Kamal1,Li Tianrui1,Yahaya Mahama2

Affiliation:

1. School of Information Science and Technology, Southwest Jiaotong University, China

2. School of Transport and Logistics Engineering, Southwest Jiaotong University, China

Abstract

The most frequently used machine learning feature ranking approaches failed to present optimal feature subset for accurate prediction of defective software modules in out-of-sample data. Machine learning Feature Selection (FS) algorithms such as Chi-Square (CS), Information Gain (IG), Gain Ratio (GR), RelieF (RF) and Symmetric Uncertainty (SU) perform relatively poor at prediction, even after balancing class distribution in the training data. In this study, we propose a novel FS method based on the Maximum Likelihood Logistic Regression (MLLR). We apply this method on six software defect datasets in their sampled and unsampled forms to select useful features for classification in the context of Software Defect Prediction (SDP). The Support Vector Machine (SVM) and Random Forest (RaF) classifiers are applied on the FS subsets that are based on sampled and unsampled datasets. The performance of the models captured using Area Ander Receiver Operating Characteristics Curve (AUC) metrics are compared for all FS methods considered. The Analysis Of Variance (ANOVA) F-test results validate the superiority of the proposed method over all the FS techniques, both in sampled and unsampled data. The results confirm that the MLLR can be useful in selecting optimal feature subset for more accurate prediction of defective modules in software development process

Publisher

Zarqa University

Subject

General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3