Emotion Recognition based on EEG Signals in Response to Bilingual Music Tracks

Author:

Zainab Rida,Majid Muhammad

Abstract

Emotions are vital for communication in daily life and their recognition is important in the field of artificial intelligence. Music help evoking human emotions and brain signals can effectively describe human emotions. This study utilized Electroencephalography (EEG) signals to recognize four different emotions namely happy, sad, anger, and relax in response to bilingual (English and Urdu) music. Five genres of English music (rap, rock, hip-hop, metal, and electronic) and five genres of Urdu music (ghazal, qawwali, famous, melodious, and patriotic) are used as an external stimulus. Twenty-seven participants consensually took part in this experiment and listened to three songs of two minutes each and also recorded self-assessments. Muse four-channel headband is used for EEG data recording that is commercially available. Frequency and time-domain features are fused to construct the hybrid feature vector that is further used by classifiers to recognize emotional response. It has been observed that hybrid features gave better results than individual domains while the most common and easily recognizable emotion is happy. Three classifiers namely Multilayer Perceptron (MLP), Random Forest, and Hyper Pipes have been used and the highest accuracy achieved is 83.95% with Hyper Pipes classification method.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3