Affiliation:
1. Faculty of Information Technology, Zarqa University, Jordan
Abstract
A 2-coloring of a hypergraph is a mapping from its vertex set to a set of two colors such that no edge is monochromatic. The hypergraph 2- Coloring Problem is the question whether a given hypergraph is 2-colorable. It is known that deciding the 2-colorability of hypergraphs is NP-complete even for hypergraphs whose hyperedges have size at most 3. In this paper, we present a polynomial time algorithm for deciding if a hypergraph, whose incidence graph is P_8-free and has a dominating set isomorphic to C_8, is 2-colorable or not. This algorithm is semi generalization of the 2-colorability algorithm for hypergraph, whose incidence graph is P_7-free presented by Camby and Schaudt.