Author:
Sutar Sandeep,Byranahallieraiah Manjunathswamy,Shivashankaraiah Kumarswamy
Abstract
In Cloud Computing (CC) environment, requests of user are maintained via workloads that are allocated to Virtual Machines (VMs) using scheduling techniques which primarily focus on reducing the time for processing by generating efficient schedules of smaller lengths. The efficient processing of requests also needs larger usage of resources that incurs higher overhead in the form of utilization of energy and optimization of cost utilized by Physical Machines (PMs). Assignment of VMs optimally in the environment of CC for jobs submitted by users is a challenge. In order to obtain better solution involving scheduling of jobs to VMs, considering two parameters utilization of energy and cost, we present a dual-objective approach for VM allocation with improved scheduling of jobs in CC environment. The proposed work aimed to build a dual-objective scheduling model for improved job scheduling, focusing on minimization of cost and utilization of energy at a time. For evaluating performance of dual-objective approach, we utilized two types of benchmark datasets and compared with existing approaches such as Whale, Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Metaheuristic Dynamic VM Allocation (MDVMA) techniques. The results obtained from simulation demonstrated that dual-objective approach performs better in the form of minimization of utilization of energy and cost