CANBLWO: A Novel Hybrid Approach for Semantic Text Generation

Author:

Pandey Abhishek Kumar,Roy Sanjiban Sekhar

Abstract

Semantic text generation is critical in Natural Language Processing (NLP) as it faces challenges such as maintenance of coherence among texts, contextual relevance, and quality output. Traditional language models often produce grammatically inconsistent text. To address these issues, we introduce Convolutional Attention Bi-LSTM with Whale Optimization (CANBLWO), a novel hybrid model that integrates a Convolutional Attention Network (CAN), Bidirectional Long Short-Term Memory (Bi-LSTM), and Whale Optimization Algorithm (WOA). CANBLWO aims to generate semantically rich and coherent text and outperforms the traditional models like Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Bi-LSTM, and Bi-LSTM with attention, Bidirectional Encoder Representations from Transformers (BERT), and Generative Pre-trained Transformer 2 (GPT-2). Our model achieved 0.79, 0.78, 0.76, and 0.82 scores in Metric for Evaluation of Translation with Explicit Ordering (METEOR), Bi-Lingual Evaluation Understudy (BLEU), Consensus-based Image Description Evaluation (Ciders), and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics, respectively. The proposed model also demonstrates 97% and 96% accuracy on Wiki-Bio and Code/Natural Language Challenge (CoNaLa) datasets, highlighting its effectiveness against Large Language Models (LLMs). This study underscores the potential capability of hybrid approaches in enhancing semantic text generation

Publisher

Zarqa University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3