Latent Fingerprint Recognition using Hybrid Ant Colony Optimization and Cuckoo Search

Author:

Jindal Richa,Singla Sanjay

Abstract

Latent fingerprints are adapted as prominent evidence for the identification of crime suspects from ages. The unavailability of complete minutiae information, poor quality of impressions, and overlapping of multi-impressions make the latent fingerprint recognition process a challenging task. Although the contributions in the field are efficient for determining the match, there is a requirement to ameliorate the existing techniques as false identification can put the benign behind bars. This research work has amalgamated the Cuckoo Search (CS) algorithm with Ant Colony Optimization (ACO) for the recognition of latent fingerprints. It reduces the demerits of the individual cuckoo search algorithm, such as the probability of falling into local optima, the inefficient creation of nests at the boundary due to random walk and Levy flight attributes. The positive feedback mechanism of ant colony optimization makes it easy to combine with other techniques, reducing the risk of local failure and evaluating the global best solution. Prior to the evaluation of the proposed amalgamated technique on the latent fingerprint dataset of NIST SD-27, it is tested with the benchmark functions for different shapes and physical attributes. The benchmark testing and latent fingerprint evaluation result in the betterment of the amalgamated technique over the individual cuckoo search algorithm. The state-of-the-art comparison indicates that the amalgamation technique outperformed the other fingerprint matching techniques.

Publisher

Zarqa University

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Unlocking Control System for Fingerprint Recognition of Atomizer;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01

2. A Simple and Stable Method of Creating Fingerprint Features with Image Rotation;The International Arab Journal of Information Technology;2023

3. Generating Embedding Features Using Deep Learning for Ethnics Recognition;The International Arab Journal of Information Technology;2023

4. A Novel Codebook Generation by Smart Fruit Fly Algorithm based on Exponential Flight;The International Arab Journal of Information Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3