Author:
Botelho Fernanda, ,Ilisevic Dijana,
Abstract
In this paper we investigate inverse eigenvalue problems for finite spectrum linear isometries on complex Banach spaces. We establish necessary conditions on a finite set of modulus one complex numbers to be the spectrum of a linear isometry. In particular, we study periodic linear isometries on the large class of Banach spaces X with the following property: if T:X→X is a linear isometry with two-point spectrum {1,λ} then λ=−1 or the eigenprojections of T are Hermitian.
Subject
Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献