MOLECULAR STRUCTURE OF TRYPTOPHAN: GAS PHASE ELECTRON DIFFRACTION AND QUANTUM-CHEMICAL STUDIES

Author:

Dunaeva Valeriya V.,Girichev Georgiy V.,Giricheva Nina I.

Abstract

The molecular structure and conformational properties of tryptophan have been investigated by gas-phase electron diffraction and theoretical methods. Quantum chemical calculations realized by program Gaussian 03 (B3LYP/cc-pVTZ) have been predicted the existence of six conformers at the temperature of experiment (T = 495 K). The ability of gas-phase electron diffraction method to distinguish the structure of conformers was estimated theoretically. Conformers have different orientations of carboxylic and amine group, backbone and indole fragment to each other. These conformers can be divided on two groups: distinguishable parameters (with different torsion angle C(OOH)-C(HNH2)-C(H2)-C(ind)) and weekly distinguishable ones (with different torsion angles H-N-C-C and H-O-C-C) by gas-phase electron diffraction. The molecular parameters of the conformers were determined. The conformers have intramolecular hydrogen bonding of the H2N···HO. The analysis of the gas-phase electron diffraction data have been carried out assuming the saturated vapor of tryptophan at T = 495 K consists of mixture at least of two conformers with lowest energy. It was shown that optimal ratio between conformers I : II was 50 : 50, respectively. The geometrical parameters of amino acids molecules (glycine, alanine, tryptophan) obtained by gas-phase electron diffraction were compared. The influence of the intramolecular hydrogen bond was established onto the structural parameters of the backbone of the above amino acids molecules.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3