MAGNETOCALORIC EFFECT AND HEAT CAPACITY OF MAGNETIC FLUIDS

Author:

Korolev Viktor V.,Ramazanova Anna G.,Balmasova Olga V.,Gruzdev Matvey S.

Abstract

The magnetic fluids based on magnetite nanoparticles were synthesized using mixed surfactants (oleic acid/alkenyl succinic anhydride) dispersed in different carrier media (polyethylsiloxane and dialkyldiphenyl). The physicochemical properties of magnetic fluids (density, viscosity, saturation magnetization, magnetic phase concentration, magnetic core size) were determined. Magnetic fluids are stable in a wide temperature range. All the samples of the magnetic fluids exhibit typical superparamagnetic behavior. The magnetocaloric effect and the specific heat capacity of the magnetic fluids were first direct determined at 288–350 K in a magnetic field of 0–1.0 T. The field dependences of the magnetocaloric effect have a classic linear form. The temperature dependences of the magnetocaloric effect of magnetic fluids in magnetic fields have an extreme character. Thermodynamic parameters of magnetic fluids (magnetization namely enthalpy/entropy change) were determined. The specific heat capacity of magnetic fluid samples in a zero magnetic field was obtained at different temperatures (at 278–350 K) on a differential scanning calorimeter and on the original microcalorimeter. The temperature dependences of the heat capacity of magnetic fluids in magnetic fields have an extreme character. It was established that the difference in heat capacity values obtained in and without the magnetic field is within the experimental error. The extreme character of the heat capacity is reflected in the magnetocaloric effect temperature dependences.

Publisher

Ivanovo State University of Chemistry and Technology

Subject

General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3