TheSalmonellaEffector PipB2 Affects Late Endosome/Lysosome Distribution to Mediate Sif Extension

Author:

Knodler Leigh A.1,Steele-Mortimer Olivia1

Affiliation:

1. Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840

Abstract

After internalization into mammalian cells, the bacterial pathogen Salmonella enterica resides within a membrane-bound compartment, the Salmonella-containing vacuole (SCV). During its maturation process, the SCV interacts extensively with host cell endocytic compartments, especially late endosomes/lysosomes (LE/Lys) at later stages. These interactions are mediated by the activities of multiple bacterial and host cell proteins. Here, we show that the Salmonella type III effector PipB2 reorganizes LE/Lys compartments in mammalian cells. This activity results in the centrifugal extension of lysosomal glycoprotein-rich membrane tubules, known as Salmonella-induced filaments, away from the SCV along microtubules. Salmonella overexpressing pipB2 induce the peripheral accumulation of LE/Lys compartments, reducing the frequency of LE/Lys tubulation. Furthermore, ectopic expression of pipB2 redistributes LE/Lys, but not other cellular organelles, to the cell periphery. In coexpression studies, PipB2 can overcome the effects of dominant-active Rab7 or Rab34 on LE/Lys positioning. Deletion of a C-terminal pentapeptide motif of PipB2, LFNEF, prevents its peripheral targeting and effect on organelle positioning. The PipB2 homologue PipB does not possess this motif or the same biological activity as PipB2. Therefore, it seems that a divergence in the biological functions of these two effectors can be accounted for by sequence divergence in their C termini.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3